INTEGRATIVE SCIENCE at Cape Breton University ... academic program & supporting research

presentation by: Cheryl Bartlett, PhD, Canada Research Chair in Integrative Science

Aboriginal Studies University of Toronto science discussion committee 6 November 2007

Co-Learning Journey

I his visual is based on the Medicine wheel for Circle of Learning) which is a commonly used Aboriginal teaching tool. The visual shows that within the discussion, all have a role to play. Each person has an opportunity to speak, to share, to teach, and to learn.

5

Each participant gains some new understandings of Mother Earth and her lessons for humans about health, healing and wholeness based on sharing, listening, and discussing.

Elders and special guests share their perspectives based on Traditional Aboriginal Knowledge, the Mi'kmaq worldview, and Western Science.

Co-Learners

University Researchers & Students

4

University researchers from Eastern Canada and senior Mi'kmaq Integrative Science students share their perspectives based on Western, Aboriginal or Integrative perspectives.

First Understandings

2

6

Key concepts are introduced with visual icons and verbal explanations by first-year Mi¹kmaq students from the Integrative Science program, a CBU science degree that brings together Aboriginal and Western scientific understandings.

3

Community Representatives

Individuals from Mi'kmaq communities in Cape Breton share their understandings of the concepts introduced by students.

10+ years: where our journey has been and continues to be ...

Integrative Science

bringing together Indigenous and Western scientific knowledges and ways of knowing

Why our journey started ...

Mi'kmaq Language Program Artist: Michael J. Martin

mid 1990's & now

other universities in traditional territory of Mi'kma'ki

Why?

1

... almost no Mi'kmaq students in science

MI'KMA'KI

Native Council of Nova Scotia Mi'kmaq Language Program Artist: Michael J. Martin

mid 1990's & now

Mi'kma'ki

same picture, other Aboriginal students ... universities across Canada and throughout North America

Why?

... and many, many youth

The central dilemma of science education today is the teaching of science from only one cultural perspective, and in an incomplete and non-connected manner.

Gregory Cajete, PhD, scientist & educator, Univ. of New Mexico

Integrative Science

Artist Basma Kavanagh

X

Integrative Science

SCIENCE

education, research, applications, youth and community outreach

Indigenous our sciences "bringing our stories "bringing our knowledges Artist Basma Kavanagh our worldviews

Go into a forest, you see the birch, maple, pine. Look underground and all those trees are holding hands. We as people must do the same. (late Mi'kmaq Chief, Spiritual Elder, and Healer Charlie Labrador)

Indigenous

DYNAMIC, PATTERN-BASED KNOWLEDGE PATTERN: recognition, transformation, expression

stories of our interactions with and within nature

Science

Indigenous and Western scientific knowledges are based in observations of the natural world.

Both result from the same intellectual process of creating "order", i.e. pattern stories.

Artist Basma Kavanagh Science is pattern-based knowledge.

stories of our interactions with and within nature Science: dynamic, pattern-based knowledge

the patterns that <u>we</u> see within nature reflect <u>our</u> ...

SANCTIONED PERSPECTIVES & INTELLIGENCES: who we are; where we are; where we were; what we know, do and value

Artist Basma Kavanagh

stories of our interactions with and within nature

stories of our interactions with and within nature

H									\mathcal{L}
3 Li Lithium	4 Be Beryllium								
Na Sodium	12 Mg Magnesium								
19 K Potassium	20 Ca Calcium	Scandium	22 Ti Titanium	Vanadium	Cr Chromium	25 Mn Manganese	Fe Iron	Cobalt	28 Ni Nickel
37 Rb Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladiu
Cs Cs Cesium	56 Ba Barium	57-71	72 Hf Hafnium	Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum
Francium	88 Ra Radium	89-103	104 Unnil- quadium	105 Unp Unnil- pentium	106 Unh Unnil- hexium	107 Uns Unnil- septium	108 Uno Unnil- octium	Unnil- ennium	
			57	58 Ca	50 Pr	60 NLJ	61 Dera	62 S	63
			Lanthanum	Cerium	Praseo- dymium	Neodymium	Promethium	Samarium	Europium
		,	Ac	Th	Protact-	92 U	Np	P4 Pu	Am

Europium	64	65	66	67	68	69	70	71
	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Luterium
95	96	97	98	90	Fermium	101	102	103
Am	Cm	Bk	Cf	Es		Md	No	Lr
Americium	Curium	Berkelium	Californium	Einsteinium		Mendelevium	Nobelium	Lawrencium

Periodic Table of the Elements

Toqwa'tu'kl Kjijitaqnn Integrative Science

What Why

Who

How

Artist Basma Kavanagh

Who?

1999-2007

> 100 Mi'kmaq students have experienced 1st year science

Toqwa'tu'kl Kjijitaqnn Integrative Science

What

Why

How

Who

science curricula lack Aboriginal perspectives

Artist Basma Kavanagh

PART 1) Innovative program structure

- degree profile
 - 40 courses (120 credits)
 - 2 work placements (non credit)
- conventional courses: 32 of 40
- innovative courses: 8 of 40

PART 2) Innovative courses (MSIT)

- integrative framework
- curricular components

pattern recognition & transformation

Bachelor of Science Community Studies

Degree Prome tor. Toqwa'tu'kl Kjijitaqnn / **Integrative Science**

Bringing Knowledges Together ... from Western scientific and Aboriginal world views

Degree Core (18 credite)

Deg	tee core (46 credits)
1)	PCS 100: Analysis and Decision Making (6 credits)
2)	PCS 200: Applied Research (6 credits)
3)	PCS 300: Community Intervention (6 credits)
4)	science and technology perspectives (6 credits): Phil 222, or equivalent
5)	world views and values (3 credits): Phil 251, Phil 253, or equivalent
6)	Aboriginal perspectives (3 credits): Mikm at 100 or 200 level, or 361, or equivalent
7)	business perspectives (3 credits): Buss 111, Buss 231, or equivalent
8)	public communication (3 credits): Comm 103, Comm 105, or equivalent
9)	effective writing (6 credits): Engl 100, Engl 205 + Engl 207, or equivalent
10)	computer literacy (3 credits): Phil 115, Comp 102 or 111, Buss 181, or equivalent
11)	statistics (3 credits): Math 135, Math 335, Buss 182, Psych 201, or equivalent
Scie	ance Area of Concentration (42 credits)

cience Area of Concentration 14.	2 credits)
a) University (8 courses)	b) Technology (6 courses)
1) 3 credits: MSIT 101	1 + 2) 6 credits: Chem 121 + 122
2) 3 credits: MSIT 103	
3) 3 credits: MSIT 201	3 + 4) 6 credits: Math 131 + 132, or
4) 3 credits: MSIT 203	Phys 100, or Phys 111 + 112
5) 3 credits: MSIT 301	5 + 6) 6 credits (at least 3 credits must be at 300 level):
6) 3 credits: MSIT 303	- Geol 111
7) 3 credits: MSIT 401	- any PubH at 200 level or higher
8) 3 credits: MSIT 401	- any Envi at 200 level or higher
and an and the second and the second	

Student's	Electives	(30 credits)	
41	0 11		

L) S cieuits.	
2) 3 credits:	
3) 3 credits:	
4) 3 credits:	
5) 3 credits:	

6) 3 credits:	
7) 3 credits:	
9) 3 credits:	

0) 3 credits
9) 3 credits:
10) 3 credits:

Work Placements (paid or voluntary, each at least 120 hours)

1) 2)

An overall average of 60% (in courses over your four years) is required for graduation.

Bachelor of Science Community Studies

Degree Profile for: Toqwa'tu'kl Kjijitaqnn / Integrative Science

Bringing Knowledges Together ... from Western scientific and Aboriginal world views

Degree Core (48 credits)

- 1) _____ PCS 100: Analysis and Decision Making (6 credits)
- 2) PCS 200: Applied Research (6 credits)
- PCS 300: Community Intervention (6 credits)
- 4) _____ science and technology perspectives (6 credits): Phil 222, or equivalent
- 5) _____ world views and values (3 credits): Phil 251, Phil 253, or equivalent
- 6) _____ Aboriginal perspectives (3 credits): Mikm at 100 or 200 level, or 361, or equivalent

2) concentration

8) 3 credits: MSIT 401

Student's Elec. 1) 3 credits:

2)

or equivalent 05, or equivalent 207, or equivalent

ce Area of Concentration 42 credits) a) University (8 courses) b) Technology (6 courses) 1) 3 credits: MSIT 101 1+2) 6 credits: Chem 121 + 122 2) 3 credits: MSIT 103 3) 3 credits: MSIT 201 3 + 4) 6 credits: Math 131 + 132, or 4) 3 credits: MSIT 203 Phys 100, or Phys 111 + 112 5) 3 credits: MSIT 301 5 + 6) 6 credits (at least 3 credits must be at 300 level): 6) 3 credits: MSIT 303 - Geol 111 7) 3 credits: MSIT 401 - any PubH at 200 level or higher

- any Envi at 200 level or high

2) 3 credits: 7) 3 credits: 3) 3 credits: 8) 3 credits: 4) 3 credits: 9) 3 credits: 5) 3 credits: 10) 3 credits:

<u>Work Placements</u> (paid or voluntary, each at least 120 hours)

An overall average of 60% (in courses over your four years) is required for graduation.

credits)

CREDITS: 42 Science: university & applied (tech)

Bachelor of Science Community Studies

Degree Profile for: Toqwa'tu'kl Kjijitaqnn / Integrative Science

Bringing Knowledges Together ... from Western scientific and Aboriginal world views

Degree Core (48 credits)

Science Area of Concentration (42 credits)

a) University (8 courses) 1) 3 credits: MSIT 101 2) 3 credits: MSIT 103 3) 3 credits: MSIT 201 4) 3 credits: MSIT 202 b) <u>Technology</u> (6 courses) 1+2) 6 credits: Chem 121 + 122

3 + 4) 6 credits: Math 131 + 132, or Phys 100, or Phys 111 + 112 5) 6 credits (at least 3 credits must be at 300 level):

- Geol 111

PubH at 200 level or higher

3) electives

1) 2)

Student's Electives (30 credits) 1) 3 credits: 6) 3 credits: 2) 3 credits: 7) 3 credits: 3) 3 credits: 8) 3 credits: 4) 3 credits: 9) 3 credits: 5) 3 credits: 10) 3 credits:

Work Placements (paid or voluntary, each at least 120 hours)

An overall average of 60% (in courses over your four years) is required for graduation.

CREDITS: 30

Science: all, some, none

Bachelor of Science Community Studies

Degree Profile for: Toqwa'tu'kl Kjijitaqnn / Integrative Science

Degree Core (48 credits)

Bringing Knowledges Together ... from Western scientific and Aboriginal world views

PCS 100: Analysis and Decision Making (6 credits) 1) PCS 200: Applied Research (6 credits) 2) 3) PCS 300: Community Intervention (6 credits) science and technology perspectives (6 credits): Phil 222, or equivalent 4) world views and values (3 credits): Phil 251, Phil 253, or equivalent 5) 6) Aboriginal perspectives (3 credits): Mikm at 100 or 200 level, or 361, or equivalent 7) business perspectives (3 credits): Buss 111, Buss 231, or equivalent 8) public communication (3 credits): Comm 103, Comm 105, or equivalent 9) effective writing (6 credits): Engl 100, Engl 205 + Engl 207, or equivalent 10) computer literacy (3 credits): Phil 115, Comp 102 or 111, Buss 181, or equivalent 11) statistics (3 credits): Math 135, Math 335, Buss 182, Psych 201, or equivalent Science Area of Concentration (42 credits) a) University (8 courses) b) Technology (6 courses) 1+2) 6 credits: Chem 121 + 122 1) 3 credits: MSIT 101 2) 3 credits: MSIT 103 3) 3 credits: MSIT 201 3 + 4) 6 credits: Math 131 + 132, or 4) 3 credits: MSIT 203 Phys 100, or Phys 111 + 112 5) 3 credits: MSIT 301 5 + 6) 6 credits (at least 3 credits must be at 300 level): 6) 3 credits: MSIT 303 - Geol 111 7) 3 credits: MSIT 401 - any PubH at 200 level or higher 8) 3 credits: MSIT 401 - any Envi at 200 level or higher Student's Electives (30 credits) 1) 3 credits: 6) 3 credits: 4) work placements **CREDITS: 0** Work Placements (paid or voluntary, each at least 120 hours) 1) 2) **Science:** experience An overan trage of 60% (in courses over your four years) is required for graduation.

Bachelor of Science Community Studies

Degree Profile for: Togwa'tu'kl Kjijitagnn / **Integrative Science**

Bringing Knowledges Together ... from Western scientific and Aboriginal world views

Deg	ree core (46 credits)
1)	PCS 100: Analysis and Decision Making (6 credits)
2)	PCS 200: Applied Research (6 credits)
3)	PCS 300: Community Intervention (6 credits)
4)	science and technology perspectives (6 credits): Phil 222, or equivalent
5)	world views and values (3 credits): Phil 251, Phil 253, or equivalent
6)	Aboriginal perspectives (3 credits): Mikm at 100 or 200 level, or 361, or equivalent
7)	business perspectives (3 credits): Buss 111, Buss 231, or equivalent
8)	public communication (3 credits): Comm 103, Comm 105, or equivalent
9)	effective writing (6 credits): Engl 100, Engl 205 + Engl 207, or equivalent
10)	computer literacy (3 credits): Phil 115, Comp 102 or 111, Buss 181, or equivalent
11)	statistics (3 credits): Math 135, Math 335, Buss 182, Psych 201, or equivalent
Scie	nce Area of Concentration (42 credits)
	a) University (8 courses) b) Technology (6 courses)
	1) 3 credits: MSłT 101 1+2) 6 credits: Chem 121 + 122

a) University (8	courses)
1) 3 credits:	MSIT 101
a) a	14017 400

2) 3 credits: MSIT 103 3) 3 credits: MSIT 201 4) 3 credits: MSIT 203 5) 3 credits: MSIT 301 6) 3 credits: MSIT 303 7) 3 credits: MSIT 401 8) 3 credits: MSIT 401 3 + 4) 6 credits: Math 131 + 132, or Phys 100, or Phys 111 + 112 5 + 6) 6 credits (at least 3 credits must be at 300 level): - Geol 111 - any PubH at 200 level or higher - any Envi at 200 level or higher

Student's Electives (30 credits)

1) 3 credits:	
2) 3 credits:	
3) 3 credits:	
4) 3 credits:	
5) 3 credits:	

Work Placements (paid or voluntary, each at least 120 hours)

1) 2)

An overall average of 60% (in courses over your four years) is required for graduation.

Science

PATTERN

conceptual space shifting

Science

PATTERN

conceptual space shifting

4 Years

Fall terms Winter terms

Christmas break

Each term = 5 courses

MStT science courses

MStT science courses

PCS courses

1 year

<u>M</u>i'kmaq <u>S</u>cience <u>A</u>dvantage <u>P</u>rogram

MStT science courses

MSAP

Journey of Life

university degree

Toqwa'tu'kl Kjijitaqnn Integrative Science

What Why How Who

Where

Artist Basma Kavanagh

Western science: cosmology-physicschemistry-geology-biology-consciousness

How?

SEEING COMMON GROUND Indigenous Knowledge & Western Science

How?

Integrative Framework

both Indigenous and Western, plus:

- our roles (you and me) in "the knowing"
 - patterns: recognition, transformation, expression
 - visuals
- our common ground
- our differences (and respect them)
- our journey ... forward & together

AVOID ... simply Western plus bits and pieces of Indigenous

We must become able to put the "**know**, **do**, **value**" aspects of our worldviews in front of us ... like an object ... and then we must develop the abilities to walk around them ... to acknowledge them, take ownership of them, understand them, and put them beside those of another worldview ... to see our mutual strengths and to begin working together in a reciprocally respectful manner.

Two-Eyed Seeing our key concepts & actions

- respect
- relationship
- reverence
- reciprocity
- ritual (=ceremony)
- repetition
- responsibility

hypothesis

(making & testing)

- data collection
- data analysis
- model & theory construction

Two-Eyed Seeing our overall knowledge objective

З

towards resonance of understanding within environment

towards construction of understanding of environment

towards construction of understanding of environment

